我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:六合公式 > 仿射变换 >

射影几何学的射影几何的子

归档日期:06-16       文本归类:仿射变换      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  射影群中有许多重要子群,对应于每一个这样的子群有一种几何,叫做射影几何的子几何。

  为了简单明确起见,下面所说的射影群就是直射群,所说的射影变换是指直射变换,而且主要分析平面上的情况。

  在扩大仿射平面上,令无穷远线不变的射影变换是仿射变换,用非齐次坐标表示,仿射变换的方程可以写成

  □ (8)一切仿射变换所构成的仿射群,是射影群的一个子群。仿射变换保持平行性。

  在扩大仿射平面的无穷远线,-i),式中i2=-1。令点偶□1,I2(即□,□0=0)不变的仿射变换叫做相似变换;它们的方程可以写成 (8)的形状,但其中(□□)是正交方阵乘以一个常数:□一切相似变换构成相似群(也叫欧氏群或度量群),它是仿射群的子群,也是射影群的子群。有了□1,□2两点后,就可以通过射影方法在平面上引进距离和角的概念(见绝对形),相似变换把每个图形变成一个和它相似的图形,即一切长度按比例变化而角不变。这时扩大平面就可以叫做扩大欧氏平面,它上面的一切圆都经过□1□,□2。这两点就叫做无穷远圆点。

  在相似变换中,系数□□□构成正交方阵 (即□□=±1)的,叫做全等变换(或运动);式中det(□□)=1的叫做正常运动,det(□□)=-1的叫做反常运动。后者是一个正常运动和一个对直线反射之积。全等变换把每个图形变成一个和原图全等的图形。全等变换群(或运动群)是射影群、仿射群和相似群的子群。

  已给一个空间□ 以及作用于它上面的变换所构成的一个群□,就可以判断,在□里,哪些图形性质经过□中的变换不变,研究这些性质的几何就叫做属于□的几何。若□1是□的子群,属于□1的几何就叫做属于□的几何的子几何。射影几何和仿射几何依次属于射影群和仿射群,而欧氏几何则可以认为属于相似群,但又部分地属于全等群;因为它既研究相似图形,又研究全等图形。欧氏几何是仿射几何的子几何,它和仿射几何又都是射影几何的子几何;由于它研究图形的度量性质(长度、角度、面积、……),它也叫做度量几何。

  群越大,不变性质越少而越带普遍性;群越小,不变性质越多而越丰富具体。这样,就可以通过不同的群之间的关系来理解不同的几何之间的关系。

  空间□的图形还可以通过变换群□分类:把一切可以经过□的变换互相转化的图形归入同一个等价类。例如,一切满秩实迹(即有实点的)二次曲线都互相射影等价,即属于同一个射影类,它们却分为三个仿射类:和无穷远线不相交(于实点)的是椭圆,相切的是抛物线,相交于两(个实)点的是双曲线。每一个仿射类里的二次曲线又可以分为无数度量类;例如同是椭圆,两个半轴长比值不同的就不相似,半轴长不分别相等的就不全等。

  两种非欧几何,即椭圆几何和双曲几何都是射影几何的子几何。在射影平面上,把虚迹二次曲线□□变为自己的一切射影变换构成射影群的一个子群,叫做椭圆(运动)群;属于它的几何就是椭圆几何,附有那个不变二次曲线的射影平面叫做椭圆平面。另一方面,把实迹二次曲线□变为自己,并把它的内部(即□的点的集合)变为内部的射影变换也构成射影群的一个子群,叫做双曲(运动)群;属于它的几何就是双曲几何;那个二次曲线内部就是双曲平面。非欧平面上的长度和角度概念也可以通过射影方法来引进。

  射影几何另外一个重要子几何是闵科夫斯基几何。把点偶(0,1,1)和(0,1,-1)(即□)变为自己的一切射影变换构成洛伦兹群,属于它的几何就是闵科夫斯基几何。闵科夫斯基几何为狭义相对论提供了天然的几何说明;四维闵科夫斯基几何就是四维时空(见闵科夫斯基空间)。

  上面所论的射影群的每个子群都有一个不变的图形(其中有些是虚迹图形),如对于仿射群的□0=0,对于相似群的□,对于椭圆群的□等。这种不变图形就叫做相应子几何的绝对形。

  以上理论都可以推广到三维以至任意维空间。在三维空间,欧氏几何的绝对形是□□,它叫做无穷远虚圆;因为扩大欧氏平面的一切球面都经过它。空间椭圆几何,双曲几何和闵科夫斯基几何的绝对形依次是□□。

本文链接:http://renfriends.com/fangshebianhuan/633.html