我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:六合公式 > 仿射变换 >

Affine transformation

归档日期:06-07       文本归类:仿射变换      文章编辑:爱尚语录

  Affinetransformation这个算法怎么实现在,能不能做一番讲述,我看了一些,是英文写的,看不太懂,所以来百度,请教大家来了。...

  Affine transformation 这个算法怎么实现在,能不能做一番讲述,我看了一些,是英文写的,看不太懂,所以来百度,请教大家来了。

  几何上,两个向量空间之间的一个仿射变换或者仿射映射(来自拉丁语,affinis,“和...相关”)由一个线性变换接上一个平移组成。

  在有限维的情况,每个仿射变换可以由一个矩阵A和一个向量b给出,它可以写作A和一个附加的列b。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1。

  AffineTransform类描述了一种二维仿射变换的功能,它是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变。大二学过的复变,“保形变换/保角变换”都还记得吧,数学就是王道啊!)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。

  此类变换可以用一个3×3的矩阵来表示,其最后一行为(0, 0, 1)。该变换矩阵将原坐标(x, y)变换为新坐标(x, y),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:

  (译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)

  缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:

  当sx=sy时,称为尺度缩放,sx不等于sy时,这就是我们平时所说的拉伸变换。

  (译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)

  旋转变换2,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为:

本文链接:http://renfriends.com/fangshebianhuan/539.html