我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:六合公式 > 仿射变换 >

图像的相机参数以及旋转矩阵 怎么求解单应性矩阵变换

归档日期:05-02       文本归类:仿射变换      文章编辑:爱尚语录

  先A后B变换的组合等同于两个矩阵乘积的变换。需要注意的是先A后B表示为BA而不是AB。

  逆变换:能够通过两个矩阵相乘将两个变换组合在一起这样的能力就使得可以通过逆矩阵进行变换的逆变换。A表示A的逆变换。变换矩阵并不都是可逆的,但通常都可以进行直观的解释。在特殊的情况下,几乎所有的变换都是可逆的。只要sx与sy都不为零,那么缩放变换也是可逆的。另外,正投影永远是不可逆的。

  仿射变换:为了表示仿射变换,需要使用齐次坐标,即用三向量 (x,y, 1) 表示二向量,对于高维来说也是如此。按照这种方法,就可以用矩阵乘法表示变换。规定:x =x+tx;y =y+ty。在矩阵中增加一列与一行,除右下角的元素为 1 外其它部分填充为 0,通过这种方法,所有的线性变换都可以转换为仿射变换。通过这种方法,使用与前面一样的矩阵乘积可以将各种变换无缝地集成到一起。当使用仿射变换时,其次坐标向量w从来不变,这样可以把它当作为 1。但是,透视投影中并不是这样。

  透视投影:三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。最简单的透视投影将投影中心作为坐标原点,z= 1 作为图像平面,这样投影变换为x =x/z;y =y/z。这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素wc并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以wc:

本文链接:http://renfriends.com/fangshebianhuan/238.html